From Harvard Gazette
Vaccine holds promise against ovarian cancer
Antigen-targeting fusion protein should be less expensive, more accessible than current approaches
March 6, 2014
By Sue McGreevey, Massachusetts General Hospital Public Affairs
A novel approach to cancer immunotherapy — strategies designed to induce the immune system to attack cancer cells — may provide a new and cost-effective weapon against some of the most deadly tumors, including ovarian cancer and mesothelioma.
Investigators from the Massachusetts General Hospital (MGH) Vaccine & Immunotherapy Center report in the Journal of Hematology & Oncology that a protein engineered to combine a molecule targeting a tumor-cell-surface antigen with another protein that stimulates several immune functions prolonged survival in animal models of both tumors.
“Some approaches to creating cancer vaccines begin by extracting a patient’s own immune cells, priming them with tumor antigens, and returning them to the patient, a process that is complex and expensive,” said Harvard Medical School Associate Professor Mark Poznansky, senior author of the report and director of the MGH Vaccine & Immunotherapy Center. “Our study describes a very practical, potentially broadly applicable, and low-cost approach that could be used by oncologists everywhere, not just in facilities able to harvest and handle patients’ cells.”
The MGH team’s vaccine stimulates the patient’s own dendritic cells, a type of immune cell that monitors an organism’s internal environment for the presence of viruses or bacteria. It ingests and digests pathogens encountered and displays antigens from those pathogens on their surface to direct the activity of other immune cells.
As noted above, existing cancer vaccines that use dendritic cells require extracting cells from a patient’s blood, treating them with an engineered protein or nucleic acid that combines tumor antigens with immune-stimulating molecules, and returning the activated dendritic cells to the patient.
Read more from Harvard Gazette >>
Vaccine holds promise against ovarian cancer
Antigen-targeting fusion protein should be less expensive, more accessible than current approaches
March 6, 2014
By Sue McGreevey, Massachusetts General Hospital Public Affairs
A novel approach to cancer immunotherapy — strategies designed to induce the immune system to attack cancer cells — may provide a new and cost-effective weapon against some of the most deadly tumors, including ovarian cancer and mesothelioma.
Investigators from the Massachusetts General Hospital (MGH) Vaccine & Immunotherapy Center report in the Journal of Hematology & Oncology that a protein engineered to combine a molecule targeting a tumor-cell-surface antigen with another protein that stimulates several immune functions prolonged survival in animal models of both tumors.
“Some approaches to creating cancer vaccines begin by extracting a patient’s own immune cells, priming them with tumor antigens, and returning them to the patient, a process that is complex and expensive,” said Harvard Medical School Associate Professor Mark Poznansky, senior author of the report and director of the MGH Vaccine & Immunotherapy Center. “Our study describes a very practical, potentially broadly applicable, and low-cost approach that could be used by oncologists everywhere, not just in facilities able to harvest and handle patients’ cells.”
The MGH team’s vaccine stimulates the patient’s own dendritic cells, a type of immune cell that monitors an organism’s internal environment for the presence of viruses or bacteria. It ingests and digests pathogens encountered and displays antigens from those pathogens on their surface to direct the activity of other immune cells.
As noted above, existing cancer vaccines that use dendritic cells require extracting cells from a patient’s blood, treating them with an engineered protein or nucleic acid that combines tumor antigens with immune-stimulating molecules, and returning the activated dendritic cells to the patient.
Read more from Harvard Gazette >>
No comments:
Post a Comment