From MIT News
Cells get ready for their close-up
New microscopy technique captures 3-D images of cells as they flow through a microfluidic channel.
Anne Trafton, MIT News Office
March 20, 2014
In 2007, MIT scientists developed a type of microscopy that allowed them to detail the interior of a living cell in three dimensions, without adding any fluorescent markers or other labels. This technique also revealed key properties, such as the cells’ density.
Now the researchers have adapted that method so they can image cells as they flow through a tiny microfluidic channel — an important step toward cell-sorting systems that could help scientists separate stem cells at varying stages of development, or to distinguish healthy cells from cancerous cells.
Other sorting methods require scientists to add a fluorescent molecule that highlights the cells of interest, but those tags can damage the cells and make them unsuitable for therapeutic uses.
“Many stem cell applications require sorting of cells at different stages of differentiation. This can be done with fluorescent staining, but once you stain the cells they cannot be used. With our approach, you can utilize a vast amount of information about the 3-D distribution of the cells’ mass to sort them,” says Yongjin Sung, a former postdoc in MIT’s Laser Biomedical Research Center and lead author of a paper describing the technique in the inaugural issue of the journal PRApplied.
Instead of using fluorescent tags, the MIT method analyzes the cells’ index of refraction — a measurement of how much the speed of light is reduced as it passes through a material. Every material has a distinctive index of refraction, and this property can be used, along with cells’ volume, to calculate their mass and density.
Cells get ready for their close-up
New microscopy technique captures 3-D images of cells as they flow through a microfluidic channel.
Anne Trafton, MIT News Office
March 20, 2014
In 2007, MIT scientists developed a type of microscopy that allowed them to detail the interior of a living cell in three dimensions, without adding any fluorescent markers or other labels. This technique also revealed key properties, such as the cells’ density.
Now the researchers have adapted that method so they can image cells as they flow through a tiny microfluidic channel — an important step toward cell-sorting systems that could help scientists separate stem cells at varying stages of development, or to distinguish healthy cells from cancerous cells.
Other sorting methods require scientists to add a fluorescent molecule that highlights the cells of interest, but those tags can damage the cells and make them unsuitable for therapeutic uses.
“Many stem cell applications require sorting of cells at different stages of differentiation. This can be done with fluorescent staining, but once you stain the cells they cannot be used. With our approach, you can utilize a vast amount of information about the 3-D distribution of the cells’ mass to sort them,” says Yongjin Sung, a former postdoc in MIT’s Laser Biomedical Research Center and lead author of a paper describing the technique in the inaugural issue of the journal PRApplied.
Instead of using fluorescent tags, the MIT method analyzes the cells’ index of refraction — a measurement of how much the speed of light is reduced as it passes through a material. Every material has a distinctive index of refraction, and this property can be used, along with cells’ volume, to calculate their mass and density.
Read more from MIT News >>
No comments:
Post a Comment