From Harvard Medical School
When Good Gut Bacteria Get Sick
Computational algorithms provide insight into how gut microbiota respond to infection over time
By MARJORIE MONTEMAYOR-QUELLENBERG
July 11, 2014
Being sick due to an infection can make us feel lousy. But what must the ecosystem of bacteria, or microbiota, colonizing our guts be going through when hit with infection? A study from HMS researchers at Brigham and Women’s Hospital (BWH) has utilized unique computational models to show how infection can affect bacteria that naturally live in our intestines.
The findings may ultimately help clinicians to better treat and prevent gastrointestinal infection and inflammation through a better understanding of the major alterations that occur when foreign bacteria disrupt the gut microbiota.
“Our gut contains ten-times more bacterial cells than there are human cells in our body,” said Lynn Bry, HMS associate professor of pathology and director of the BWH Center for Clinical and Translational Metagenomics, senior study author. “The behavior of these complex bacterial ecosystems when under attack by infection can have a big impact on our health.”
Co-first author on the study Georg Gerber, HMS instructor in pathology and co-director of the BWH, developed novel computer algorithms to analyze the different stages of infection when a pathogen known as Citrobacter rodentium, which causes disease in mice similar to food-poisoning in humans, was introduced into the guts of mice.
Read more from Harvard Medical School >>
When Good Gut Bacteria Get Sick
Computational algorithms provide insight into how gut microbiota respond to infection over time
By MARJORIE MONTEMAYOR-QUELLENBERG
July 11, 2014
Being sick due to an infection can make us feel lousy. But what must the ecosystem of bacteria, or microbiota, colonizing our guts be going through when hit with infection? A study from HMS researchers at Brigham and Women’s Hospital (BWH) has utilized unique computational models to show how infection can affect bacteria that naturally live in our intestines.
The findings may ultimately help clinicians to better treat and prevent gastrointestinal infection and inflammation through a better understanding of the major alterations that occur when foreign bacteria disrupt the gut microbiota.
“Our gut contains ten-times more bacterial cells than there are human cells in our body,” said Lynn Bry, HMS associate professor of pathology and director of the BWH Center for Clinical and Translational Metagenomics, senior study author. “The behavior of these complex bacterial ecosystems when under attack by infection can have a big impact on our health.”
Co-first author on the study Georg Gerber, HMS instructor in pathology and co-director of the BWH, developed novel computer algorithms to analyze the different stages of infection when a pathogen known as Citrobacter rodentium, which causes disease in mice similar to food-poisoning in humans, was introduced into the guts of mice.
Read more from Harvard Medical School >>
No comments:
Post a Comment